
Learning the UNIX/UNIX-Like Command-Line

A Guide for Beginners

Stacey Pellegrino, M.Sc.

Table of Contents

Introduction	
..1
Common Keyboard Shortcuts	
..2
Shell Basics	
...2
User Environment	
..2
Help and Support	
...4
UNIX Filesystem Hierarchy	
..5
Navigating the Filesystem	
..9
Managing Files and Directories	
...10
Files and Filesystems	
..12
Working with Text Files	
..13
Redirection and File Descriptors	
..15
Users and Groups	
..16
Date and Time	
..17
System Management	
...17
Package Management	
...19
Process Management	
..20
Networking	
...23
System Performance Monitoring	
..25
Regular Expressions	
..25
Visual Editor	
...26
Conclusion	...27

Introduction

Historically, the first version of UNIX was developed by Ken Thompson and Dennis Ritchie at AT&T Bell Labs
in 1971. This initial version, written in assembly language (the lowest-level hardware architecture-specific
programming language), was limited to a small set of commands. In 1973, the UNIX Operating System (OS)
was rewritten in the C programming language, which allowed for source code portability and made it easier
for other system software developers to contribute to the project.

UNIX was made available to universities for free in 1974, leading to a period of rapid innovation and
development. During the 1980s, UNIX was adopted by many commercial hardware vendors, which further
accelerated the development of UNIX. Additionally, the development of the X Window System (X11) helped
in making it easier to create Graphical User Interface (GUI) applications.

In the 1990s, the open-source movement gained momentum, leading to the release of UNIX-like systems
such as Linux and BSD (Berkeley Software Distribution) variants. This sparked another wave of rapid
innovation and development.

UNIX and UNIX-like systems include:

• Microsoft WSL (Windows Subsystem for Linux)

• macOS

• Linux

• FreeBSD

• OpenBSD

• Illumos (namely OpenSolaris and OmniOS)

• Solaris

• AIX

• HP-UX

These systems are widely used in various applications and are considered one of the most important
Operating System standards available.

The UNIX/UNIX-like command-line is an extremely powerful tool that can be used to quickly accomplish a
wide range of tasks. This introduction to the command-line explains the basic syntax and usage of common
commands for managing/manipulating files and programs on UNIX/ UNIX-like systems. It allows users to
perform various tasks, such as navigating the filesystem, creating/deleting files and directories, modifying
permissions, running programs, and so much more. It is often used by Systems Administrators and Software
Developers/Engineers to perform complex tasks efficiently.

So why use the UNIX/UNIX-like command-line? It is an efficient way to interact with a computer, as it allows
for quick and direct control of the system. It is also a great way to automate tasks and to access powerful
tools and utilities that are not available through a GUI. It is also easier to reproduce sequences of tasks than
follow GUI screenshots. In fact, a trace and record of command-line actions can be accessible from the
history of commands. Also worth noting is that when there is no GUI on the target system, server access can
be done with a remote shell, ideally with SSH (Secure Shell), which has encrypted transport over the
network (even the internet). Furthermore, advanced use of the command-line requires a higher degree of
knowledge and understanding of the underlying system.

To begin, use a terminal application in order to access a Command-Line Interface (CLI). However, there are
many interchangeable terms, such as a Text User-Interface (TUI) in contrast to a Graphical User-Interface
(GUI). The following details the alternative terms for a command-line terminal:

• Command prompt 
Console (although this can be both physical via serial RS232 and virtual with direct system access)

• Shell (a command-line interpreter):

- Korn shell (ksh)

- C shell (csh)

- Z shell (zsh)

- Bourne shell (sh)

- Bash shell (bash) also known as Bourne Again Shell (most common shell used)

Page of 1 27

Common Keyboard Shortcuts

Here are some useful CTRL sequence shortcuts for a standard UNIX terminal (performed by holding the
CTRL key followed by a character):

• CTRL-C 		 - send an interrupt requests to a process with the signal SIGINT

• CTRL-Z 		 - suspend a process with the signal SIGTSTP

• CTRL-D 		 - logout (also achieved with the commands logout and exit)

• CTRL-L 		 - clear screen (also achieved with the command clear)

• CTRL-U 		 - clear line (very useful for correcting typos in non-echoed password prompts)

Shell Basics

Most of the underlying fundamentals of a terminal application featuring a shell (command-line interpreter)
have now been introduced. However, further knowledge of UNIX commands is required in order to interface
with the OS via a shell in a terminal.

Upon launching the terminal application a prompt is presented. This prompt will typically display the name of
the current user, the hostname logged into and the directory they are in. For example, the prompt might look
like this:

user@hostname:~ $

 
This prompt indicates that the current user is user, the hostname is hostname and they are in their home
directory denoted by the ~ symbol. A typical standard for the end symbol of a prompt is $ for a regular user
and # for the superuser. The primary prompt of the shell is denoted by an environment variable PS1. This
variable can be printed by echoing this variable with the following command:

$ echo $PS1

The first command to understand and use is pwd (print working directory). Suppose the username is john
then upon login to a UNIX/UNIX-like system issuing the following command will output as follows:

$ pwd

/home/john

User Environment

To display all the shell environment variables execute the command env. To print the individual variables to
the output of the terminal:

$ echo $HOME

/home/john

$ echo $PS1

\n\u: \w\n\D{%F %T}\n\n$

This custom PS1 prompt allows for better auditing capability as it displays the username, current working
directory, the date and time followed by a new line with the default user prompt character $, and displays as
follows:

spellegrino: /etc

2023-01-19 17:12:01

$

Within a shell environment there will typically be an environment variable called PATH that allows you to
execute a command without giving an absolute or relative path name to the binary command to execute.
This can be displayed by issuing the following command:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

Page of 2 27

To update the default PATH environment variable whilst preserving the original variable, then either prepend or
append the additional PATH (separated by colons as the delimiter) with:

$ export PATH=/opt/bin:$PATH

 
In doing so the PATH variable is changed for the existing environment session and echo $PATH now outputs the
following:

/opt/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/
snap/bin

Bash shell configuration files (which are hidden due to the preceding . to the filename) reside in the home
directory and can be reread after editing with the source command:

$ source .bashrc

$ source .bash_profile

The command source is interchangeable with the character . (period), therefore when executing the
command . ~/.bash_profile it will also reread the Bash profile into the current shell environment.

The following is a Bash shell option (denoted by the -o flag) to enable vi (visual editor) inline editing on the
command-line:

$ set -o vi 

To make this persistent on subsequent logins thereafter then append this command to ~/.bash_profile file
(which is read to configure the Bash environment upon every login).

To review the history of commands that are written to the ~/.bash_history file just execute the following:

$ history

 1 ifconfig

 2 ip addr show

 3 sudo apt install net-tools

 4 ls

 5 ifconfig

 6 ping 192.168.0.19

 7 ifconfig -a

 8 tree

 9 sudo apt install tree

 10 tree 
 11 tree-d-L2/ 12 set-ovi 
 13 history

The which command is used to locate a command. It searches for the given command name in all directories
specified in the PATH environment variable and displays the absolute path of the executable if found. It is
useful for finding out if a command is available in the system and what its exact location is. An example is:

$ which ls

/usr/bin/ls

The whereis command is used to locate source, binary and man (manual) page files for a given command. It
searches for the given command name in the standard UNIX directories and displays the absolute path of
the executable, source and man page files if found. An example is:

$ whereis ls

ls: /usr/bin/ls /usr/share/man/man1/ls.1.gz

To run a program not located in the PATH environment variable, for example, an executable file called program
in the current directory, execute the following command (notice the ./ prefix to the program name):

$./program

Run the following command to check the exit status of the previous executed command (whereby a 0
indicates that the program executed successfully, whilst a non-zero value refers to a returned error):

$ echo $?

Running programs from the command line is straightforward, and checking the exit status helps verify the
success or failure of commands.

Page of 3 27

Help and Support

Some of the best resources are https://superuser.com and https://askubuntu.com. However, UNIX systems
typically include a standard documentation system known as man pages, which are in a consistent format.
The man command is used to view the man page of a particular command in a UNIX system. The man page
consists of information about the command such as its syntax, options and usage. To use the man command,
you can type man <command> into a terminal. For example, viewing the man page for the command ls would
be the command man ls accordingly. Also worth exploring is the man page for the man command itself, that
simply being the command man man.

When viewing a manl page of a command it will render in the terminal with the user configured pager (either
more or less). To navigate each man page use the ↑ (up) and ↓ (down) arrows of the keyboard, although this
only shifts the output by one line at a time, therefore press the spacebar to page forward (within the screen
size of the terminal) or to page backward press the b key. Within the man page it is possible to search the
text accordingly. This is done by either pressing the key / for a forward search or pressing the key ? for a
reverse search, whereby the string appended to the keys of / or ? will be used as the search input, for
example /EXAM will match any uppercase strings, such as EXAMPLE or another example is /-k to match a
flag of -k in the man page being searched. If there are multiple matches of the search string, these can all be
referenced by cycling the search in the direction of the search (either forward / or reverse ?) with the
lowercase n key or the opposite direction with the uppercase N key. Furthermore, the use of regular
expressions (regex) can also be used for the search string too. Finally, to quit viewing the man page just
simply press the q key accordingly.

The man -k <keyword> command is used to search for man pages related to a particular keyword or phrase.
This command is often referred to as apropos too. Suppose a man page reference to the keyword time is
required, then man -k time would output as follows:

adjtime_config (5) - information about hardware clock setting and drift factor

bootparam (7) - introduction to boot time parameters of the Linux kernel

chrt (1) - manipulate the real-time attributes of a process

date (1) - print or set the system date and time

dmmp_context_timeout_get (3) - Get IPC timeout.

dmmp_context_timeout_set (3) - Set IPC timeout.

finalrd (1) - final runtime directory generator for shutdown

hwclock (8) - time clocks utility

kbdrate (8) - reset the keyboard repeat rate and delay time

keep-one-running (1) - run just one instance at a time of some command and unique set of argument...

ldconfig (8) - configure dynamic linker run-time bindings

localtime (5) - Local timezone configuration file

modules (5) - kernel modules to load at boot time

openssl-s_time (1ssl) - SSL/TLS performance timing program

openssl-ts (1ssl) - Time Stamping Authority tool (client/server)

openssl-tsget (1ssl) - Time Stamping HTTP/HTTPS client

pam_time (8) - PAM module for time control access

pam_timestamp (8) - Authenticate using cached successful authentication attempts

pam_timestamp_check (8) - Check to see if the default timestamp is valid

rtc (4) - real-time clock

rtcwake (8) - enter a system sleep state until specified wakeup time

run-one (1) - run just one instance at a time of some command and unique set of argument...

run-one-constantly (1) - run just one instance at a time of some command and unique set of argume...

run-one-until-failure (1) - run just one instance at a time of some command and unique set of arg...

run-one-until-success (1) - run just one instance at a time of some command and unique set of arg...

run-this-one (1) - run just one instance at a time of some command and unique set of argument...

s_time (1ssl) - SSL/TLS performance timing program

sg_timestamp (8) - report or set timestamp on SCSI device

slabtop (1) - display kernel slab cache information in real time

sleep (1) - delay for a specified amount of time

sudoers_timestamp (5) - Sudoers Time Stamp Format

sysctl (8) - configure kernel parameters at runtime

systemd-debug-generator (8) - Generator for enabling a runtime debug shell and masking specific u...

systemd-run (1) - Run programs in transient scope units, service units, or path-, socket-, o...

systemd-time-wait-sync (8) - Wait Until Kernel Time Synchronized

systemd-time-wait-sync.service (8) - Wait Until Kernel Time Synchronized

systemd-timedated (8) - Time and date bus mechanism

systemd-timedated.service (8) - Time and date bus mechanism

systemd-timesyncd (8) - Network Time Synchronization

systemd-timesyncd.service (8) - Network Time Synchronization

systemd-tmpfiles-clean.timer (8) - Creates, deletes and cleans up volatile and temporary files an...

systemd.time (7) - Time and date specifications

systemd.timer (5) - Timer unit configuration

tc-etf (8) - Earliest TxTime First (ETF) Qdisc

tc-taprio (8) - Time Aware Priority Shaper

time (1) - run programs and summarize system resource usage

time (3am) - time functions for gawk

Page of 4 27

time (7) - overview of time and timers

time.conf (5) - configuration file for the pam_time module

timedatectl (1) - Control the system time and date

timeout (1) - run a command with a time limit

timesyncd.conf (5) - Network Time Synchronization configuration files

timesyncd.conf.d (5) - Network Time Synchronization configuration files

touch (1) - change file timestamps

ts (1ssl) - Time Stamping Authority tool (client/server)

tsget (1ssl) - Time Stamping HTTP/HTTPS client

tzfile (5) - timezone information

tzselect (1) - view timezones

tzselect (8) - select a timezone

uptime (1) - Tell how long the system has been running.

user-runtime-dir@.service (5) - System units to manage user processes

vcstime (8) - Show time in upper right hand corner of the console screen

xfs_rtcp (8) - XFS realtime copy command

zdump (8) - timezone dumper

zic (8) - timezone compiler

The apropos command is an alias for the man -k command and is used to search for man pages related to a
particular keyword or phrase. Man pages provide detailed information about commands, their options and
usage examples, serving as a valuable reference.

UNIX Filesystem Hierarchy

The UNIX filesystem is hierarchical, meaning directories contain files and other directories. The composition
of a generic UNIX filesystem hierarchy standard (in alphabetical order) is as follows:

/

The root directory is the topmost directory in the UNIX filesystem hierarchy. It is the parent of all other
directories and contains the necessary files and directories to boot the system. This directory is often
referred to as the slash directory and its equivalent in MS Windows is C:\.

/bin

The bin directory (which is shorthand for binary) contains executable files that are used for system
administration and maintenance. Command-line utilities such as ls, cp, mv, and rm are typically found in this
directory or in /usr/bin (which it points to as a symbolic link).

/boot

This directory contains the files used to boot the system. This includes the initial RAM disk initrd that
contains the UNIX/UNIX-like kernel and necessary drivers, as well as the boot loader.

/dev

The dev directory contains device files that represent devices on the system. These files are used by the
kernel to access devices and manipulate their drivers.

/etc

The etc directory contains system configuration files. These files are used to configure the system and can
be edited by a privileged user.

/home

The home directory is used to store user-specific files, such as documents, images, music and videos. Each
user on the system typically has a home directory, for example, a username of john will have their home
directory as /home/john.

/lib

The lib directory contains libraries needed by programs in the system. These libraries provide the necessary
code to run programs.

Page of 5 27

/mnt

The mnt directory is used to mount other file systems, such as file systems on a USB drive.

/opt

The opt directory is typically used to store optional software packages. This can include non-standard
programs or programs that are not included in the Operating System.

/proc

The proc directory is a virtual file system that contains information about the running system, such as system
processors, system memory, processes and devices.

/root

The home directory or the privileged user root.

/sbin

The sbin directory (which is shorthand for static binary) contains executable files for system administration
and maintenance.

/tmp

The tmp directory is used to store temporary files. These files are deleted after a reboot. However, another
temporary store is that of /var/tmp, which is persistent across reboots.

/usr

The usr directory is known as UNIX System Resources and contains user-level programs and libraries.

/var

The var directory contains files that vary in size and content, such as log files (in /var/log) or databases
(typically in /var/spool). This directory is typically used to store data that changes over time.

The following is a visual overview of a typical directory hierarchy structure with the tree command. However,
it is not typically installed by default and requires installation with the apt command (which is covered in more
detail later).

$ sudo apt update

$ sudo apt install tree

$ sudo tree -d -L 2 /

/

├── bin -> usr/bin

├── boot

│ ├── grub

│ └── lost+found

├── cdrom

├── dev

│ ├── block

│ ├── bsg

│ ├── bus

│ ├── char

│ ├── cpu

│ ├── disk

│ ├── dri

│ ├── fd -> /proc/self/fd

│ ├── hugepages

│ ├── input

│ ├── mapper

│ ├── mqueue

│ ├── net

│ ├── pts

│ ├── shm

│ ├── snd

│ ├── ubuntu-vg

│ └── vfio

├── etc

│ ├── alternatives

Page of 6 27

│ ├── apparmor

│ ├── apparmor.d

│ ├── apport

│ ├── apt

│ ├── bash_completion.d

│ ├── binfmt.d

│ ├── byobu

│ ├── ca-certificates

│ ├── calendar

│ ├── cloud

│ ├── console-setup

│ ├── cron.d

│ ├── cron.daily

│ ├── cron.hourly

│ ├── cron.monthly

│ ├── cron.weekly

│ ├── cryptsetup-initramfs

│ ├── dbus-1

│ ├── dconf

│ ├── default

│ ├── depmod.d

│ ├── dhcp

│ ├── dpkg

│ ├── fonts

│ ├── fwupd

│ ├── groff

│ ├── grub.d

│ ├── gss

│ ├── init.d

│ ├── initramfs-tools

│ ├── iproute2

│ ├── iscsi

│ ├── kernel

│ ├── landscape

│ ├── ldap

│ ├── ld.so.conf.d

│ ├── libblockdev

│ ├── libnl-3

│ ├── logcheck

│ ├── logrotate.d

│ ├── lvm

│ ├── mdadm

│ ├── modprobe.d

│ ├── modules-load.d

│ ├── multipath

│ ├── netplan

│ ├── network

│ ├── networkd-dispatcher

│ ├── NetworkManager

│ ├── newt

│ ├── opt

│ ├── PackageKit

│ ├── pam.d

│ ├── perl

│ ├── pki

│ ├── pm

│ ├── polkit-1

│ ├── pollinate

│ ├── profile.d

│ ├── python3

│ ├── python3.8

│ ├── rc0.d

│ ├── rc1.d

│ ├── rc2.d

│ ├── rc3.d

│ ├── rc4.d

│ ├── rc5.d

│ ├── rc6.d

│ ├── rcS.d

│ ├── rsyslog.d

│ ├── security

│ ├── selinux

│ ├── skel

│ ├── sos

│ ├── ssh

│ ├── ssl

│ ├── sudoers.d

│ ├── sysctl.d

│ ├── systemd

│ ├── terminfo

│ ├── thermald

Page of 7 27

│ ├── tmp4inyim8q

│ ├── tmpfiles.d

│ ├── ubuntu-advantage

│ ├── udev

│ ├── udisks2

│ ├── ufw

│ ├── update-manager

│ ├── update-motd.d

│ ├── update-notifier

│ ├── UPower

│ ├── vim

│ ├── vmware-tools

│ ├── X11

│ └── xdg

├── home

│ └── spellegrino

├── lib -> usr/lib

├── lib32 -> usr/lib32

├── lib64 -> usr/lib64

├── libx32 -> usr/libx32

├── lost+found

├── media

├── mnt

├── opt

├── proc

│ ├── 1

│ ├── 10

│ ├── 102

│ ├── 105

│ ├── 11

...

│ ├── 90

│ ├── 91

│ ├── 93

│ ├── acpi

│ ├── asound

│ ├── bus

│ ├── driver

│ ├── fs

│ ├── irq

│ ├── net -> self/net

│ ├── pressure

│ ├── scsi

│ ├── self -> 2258

│ ├── sys

│ ├── sysvipc

│ ├── thread-self -> 2258/task/2258

│ └── tty

├── root

│ └── snap

├── run

│ ├── blkid

│ ├── cloud-init

│ ├── console-setup

│ ├── cryptsetup

│ ├── dbus

│ ├── fsck

│ ├── initramfs

│ ├── lock

│ ├── log

│ ├── lvm

│ ├── mount

│ ├── netns

│ ├── network

│ ├── NetworkManager

│ ├── screen

│ ├── sendsigs.omit.d

│ ├── shm -> /dev/shm

│ ├── snapd

│ ├── sshd

│ ├── sudo

│ ├── systemd

│ ├── tmpfiles.d

│ ├── udev

│ ├── udisks2

│ ├── user

│ └── uuidd

├── sbin -> usr/sbin

├── snap

Page of 8 27

│ ├── bin

│ ├── core18

│ ├── lxd

│ └── snapd

├── srv

├── sys

│ ├── block

│ ├── bus

│ ├── class

│ ├── dev

│ ├── devices

│ ├── firmware

│ ├── fs

│ ├── hypervisor

│ ├── kernel

│ ├── module

│ └── power

├── tmp

│ ├── snap.lxd

│ ├── systemd-private-a4de0be3b5a64f69a4da3c11f3fe35b3-systemd-logind.service-3bQrGf

│ ├── systemd-private-a4de0be3b5a64f69a4da3c11f3fe35b3-systemd-resolved.service-pRGARe

│ └── systemd-private-a4de0be3b5a64f69a4da3c11f3fe35b3-systemd-timesyncd.service-oJfrui

├── usr

│ ├── bin

│ ├── config

│ ├── games

│ ├── include

│ ├── lib

│ ├── lib32

│ ├── lib64

│ ├── libexec

│ ├── libx32

│ ├── local

│ ├── sbin

│ ├── share

│ └── src

└── var

 ├── backups

 ├── cache

 ├── crash

 ├── lib

 ├── local

 ├── lock -> /run/lock

 ├── log

 ├── mail

 ├── opt

 ├── run -> /run

 ├── snap

 ├── spool

 └── tmp

320 directories

Understanding the filesystem hierarchy is crucial for navigating and managing files. Each standard system
directory serves a specific purpose, and knowing these can help you locate files and troubleshoot issues
more effectively. Worth noting is that nearly everything in UNIX is a file as such.

Navigating the Filesystem

UNIX systems provide a number of commands for navigating the filesystem, whereby the most commonly
used commands for this purpose are cd and ls. The cd command is used to change directories. For
example, running the command cd /etc will navigate the current working directory to the /etc directory.
Issuing the command cd without any arguments will return the current working directory back to the home
directory of the user. The same can be achieved with cd ~ as well, therefore cd, cd ~ and cd /home/$USER are
all interchangeable. Also, executing cd - (minus) will return back to the previous working directory from the
current working directory. To navigate to the parent directory issue the command cd .. (dot-dot). The ls
command is one of the most fundamental and useful commands in UNIX. It is used for listing the contents of
a directory. It can be used to list all of the files and directories in the current directory or to list the contents of
a specified directory. For example, if in a home directory and the command ls is executed then a list of files
and directories in that home directory will be presented as output from the command.

Synopsis: ls <options> <path>

Page of 9 27

ls will list the contents of the current directory if no path is specified.

The ls command has many options that can be used to modify the output. Here are some of the most
common ones:

-a	 list all files and directories, including hidden files and directories (denoted with a . prefix to the file or

	 directory name)

-l	 list files and directories in long format, with permissions and other information

-h	 display file sizes in human-readable format (1K instead of 1024 bytes) when the -l option is used

-R	 list all files and directories recursively (including all subdirectories)

To list the contents of the current directory in long format:

$ ls -l

To list all files and directories (including hidden ones) in the /etc directory:

$ ls -a /etc

To list all files and directories in the current directory recursively:

$ ls -R

A very useful file and directory listing that shows a long format in reverse chronological order, therefore the
last line of output being the most recent file or directory, is as follows:

$ ls -l -t -r

The exact same result can be achieved by clustering the flag options together as follows:

$ ls -ltr

Managing Files and Directories

There are a series of commands to create, delete, move and copy files or directories. The most common
commands for the purpose of managing files and directories are:

• To create a file use the command: touch <filename>

• To create a directory use the command: mkdir <directory>

• To delete a file use the command: rm <filename>

• To delete a directory and its contents use the command: rm -r <directory>

• To move or rename a file or directory use the command: mv <source-file> <destination-file>

• To copy a file use the command: cp <source-file> <destination-file>

• To copy a directory use the command: cp -r <source-directory> <destination-directory>

The mkdir command is used to create a new directory. For example, if in a home directory and the command
mkdir test is executed then a new directory called test will be created in the home directory. However, if
specifying more than one directory with subdirectories the mkdir command should be invoked with a -p as a
flag option, therefore the command in full will be mkdir -p test1/test2/test3 in order to create the
intermediate directories of test3 in test2 in test1. Also, notice that the mkdir command was invoked with
what is known as an option, also referred to as a flag or a switch, that being -p (meaning create intermediate
directories). More about command flags will be covered later.

The rm command is used to delete files and/or directories. For example, if in a home directory and executing
the command rm test the test directory will not be deleted accordingly. This is because the rm command
needs to be issued with recursion. However, if the directory of concern is empty then issuing the command
rmdir test will remove the directory (a safer approach), otherwise if the directory has additional files and
directories then issuing rm -r test will recursively remove the directory and all its contents. However, always
be careful when using rm -r <directory>. This is especially true when issuing rm -r ./* (dot preceding
slash followed by a wildcard glob asterix), which could potentially be a typo like rm -r /.* (slash preceding
dot followed by a wildcard glob asterix) resulting in potentially damaging the operation of the system. This
command was executed with -r meaning a shorthand to invoking the rm command with recursive behaviour,
although grouping the flags -r with -i is a safer option as -i means interactive and requires confirmation of
deletion. Grouping flags can be done in this case as -ri or interchangeably -ir, therefore the command will
be rm -ri <directory>.

Page of 10 27

The mv command is used to both move or rename files or directories. For example, if in a home directory and
the command mv test junk is executed, the test directory will be renamed to the junk directory. If there is a
junk directory and file testfile in the current working directory, then mv testfile junk/ will move the file
testfile to the directory junk. Just to reiterate, suppose another directory called tmp is created and mv junk
tmp is executed, then the junk directory and its contents are moved into the directory named tmp. Worth
noting is that UNIX/UNIX-like systems are case-sensitive, therefore tmp, Tmp and TMP will all be different file or
directory names!

The cp command is similar to the mv command but copies rather than move/rename files or directories. To
copy a file in the same working directory could be done as cp file1 file2 or cp file1 dir1/ or cp file1
dir1/file1copy. When copying a directory, the recursive flag -r is needed. Therefore, the command will be
cp -r dir1/ tmp/ will recursively copy dir1 into the tmp directory. Worth noting is the -p flag, which preserves
attributes in the source file being copied.

To search and locate files (for example all files ending in .conf) the following command is suitable for that
task:

$ sudo find / -name *.conf -print

With the find command it is possible to list those files that are executable or have a setuid (executable as a
privileged user):

To use the find command to locate executable files requires using the following syntax:

$ find <path> -type f -executable

This command will search the specified <path> for any files that are executable and print them to standard
output.

To use the find command to locate setuid files requires using the following syntax:

$ find <path> -type f -perm -4000

This will search the specified <path> for any files that have the setuid permission bit set, which is
represented by the value 4000. The setuid is a permission setting on executable files that allows the file to be
run with privileges. This is often used to allow users to access system functions that are normally only
available to the root user. An example of this would be updating a user password with the passwd command.

ln is a command used to create hard and symbolic links.

A hard link is a link to a file on the same filesystem, and a symbolic link is a link to another filesystem, or to a
file or directory on the same filesystem.

To create a hard link use the following syntax:

$ ln -T <target> <linkname>

Where <target> is the name of the file to link against and <linkname> is the name of the link to create.

To create a symbolic link use the following syntax:

$ ln -s <target> <linkname>

Where <target> is the name of the file or directory to link against and <linkname> is the name of the link you
want to create.

Use the -f option to force the creation of a link if the file or directory already exists.

The ls -l command lists the contents of a directory in a long format, which displays additional information
about the files and directories. The output of the command will include the permissions, the number of hard
links, the owner, the group, the size in bytes, the date and time of the last modification and the name of the
file or directory. To read the permissions of an item, the first column of the ls -l output will provide the
information. Permissions are presented in groups of three. After the first character, the first group of three
characters represents the permissions for the owner of the item, then the second group of three characters
represents the permissions for the group and the third (last) group of characters represents the permissions
for all other users. The characters can be r (read), w (write), x (execute) or - (no permission). For example,
rwxr-xr-- represents read, write and execute permission for the owner, read and execute permission for the

Page of 11 27

group, and just read permission for other users (world). A prefixed d character, that being the first character
of the permissions, indicates that the item is a directory. NOTE: The minimum permissions required to
access a directory are both read and execute, most importantly is the execute permission as an absolute
requirement regarding directory access per permissions group.

When working with a group of permissions this can be summarised by adding together ALL the octal (base 8)
values together in accordance with the their values associated with each rwx statement, where read = 4,
write = 2 and execute = 1. This can be summarised as follows:

	 	 	 Octal value

r = read	 	 	 4

w = write	 	 	 2

x = execute	 	 	 1

- = no permission	 	 0

u = user

g = group

w = world

	 	 	

	 u g w	 Permission

	 rwx rwx rwx	 	 777

	 rwx rwx r-x	 	 775

	 rwx r-x r-x	 	 755

	 rw- rw- r—-	 	 664

	 rw- r—- r--	 	 644

	 rw- -—- —	 	 600

VERY IMPORTANT NOTE: An octal value that is an odd number (as opposed to even) means the execute
permission has been set.

The chmod command (known as change mode) is used to change the access permission of one or more files
and directories. For example, to give a user read, write, and execute permission to a file called file.txt then
run the following command:

$ chmod u+rwx file.txt

This command uses the u option to indicate that the permissions are being assigned to a user, the + symbol
to indicate that the permissions should be added, and the rwx to indicate that the user should be given read,
write and execute permission. Alternatively, the same outcome could be achieved with octal values as
follows:

$ chmod 777 file.txt

To change the file permissions to read and write for the user, read for the group and read for world would be
done with:

$ chmod 644 file.txt

To apply the changes recursively then invoke the chmod command with the -R flag option.

The chown command (known as change ownership) is used to change the owner and/or group of one or
more files and directories. For example, to change the ownership of the file.txt file to the user jsmith then
run the following command:

$ chown jsmith file.txt

Another example is invoking the chown command recursively and changing the group as well by executing:

$ chown -R jsmith:staff src/

What this does is change the username to jsmith and group to staff for the directory src and all files and
directories contained within the src directory.

Files and Filesystems

The command file is used to determine the type of a file. It inspects the file and determines what type of file
it is, such as an executable, an image file, a text file, etc. The command is used as follows:

Page of 12 27

$ file <options> <filename>

The command du (stands for disk usage) is used to show the amount of disk space used by a particular
directory or file. It can also be used to show the total amount of disk space used by all files in a directory. The
command is used as follows

$ du <options> <filename>

The command df (stands for disk free) is used to show the amount of block storage space available on the
system, as well as the amount of block device space used by each mounted file system. It can be used to
show the size of a mounted filesystem or all filesystem mount points. The command is used as follows:

$ df <options> <filesystem>

Therefore, df -h / will show a human-readable output of the root filesystem, including size, as available and
use %.

The watch command is used to run a command at regular intervals and display the output in the terminal.
Therefore, watch df -h command is used to monitor the amount of available block storage space on a UNIX
system. The df command is used to display the amount of available storage space, and the -h flag is used to
display the output in a human-readable format.

The command lsof (stands for list open files) and is used to show a list of open files and their associated
processes. It can be used to show information about the files and the processes which are using them.

The command mount is used to mount a filesystem or device in the system. It is used to make a filesystem
available for access by the system and users. The command is used as follows:

$ mount <options> <device> <mount-point>

The command hdparm -tT /dev/sda is used to test the performance of a hard disk drive. The -t flag is used
to run a read speed test on the drive, and the -T flag is used to run a cache speed test on the drive. The
argument /dev/sda should be replaced by the actual device name of the drive being tested.

The badblocks -s /dev/sda command is used to search for bad blocks on a hard disk drive. The -s flag is
used to enable the creation of a status report of the bad blocks found. The /dev/sda argument should be
replaced by the actual device name of the drive being tested.

The lsusb command is used to list all USB buses and devices connected to the system. It displays
information about the devices, including the vendor name, product name and device class.

The command lspci is used to list all PCI buses and devices in the system. It displays information about the
devices, including the vendor name, device name and device class.

Working with Text Files

The command-line also provides a number of commands for working with text files. The most common
commands for this purpose are cat, head, less, more and tail.

The cat command is used to display the contents of a text file. For example, if in a home directory and
running the command cat test.txt the contents of the test.txt file will be displayed. Furthermore, the cat
command (known as concatenate), therefore allows multiple files to be joined together with this command,
so an example command demonstrating this would be cat file1 file2 file3. This will consolidate all files in
the order specified and output like one continuous file. Given this, a simple example of redirection will now
be referenced. Basically, to redirect output to a file would involve executing cat file1 file2 file3 > file4,
therefore creating a new file file4 with the concatenated contents of the previous three files. Using the >
character will always create or overwrite the file specified. However, the characters >> will append as
opposed to overwrite the file specified for redirection. Therefore, the command echo FUBAR >> file4 will
append the string FUBAR to the end of the existing file contents of file4 without overwriting its existing
contents. The topic of redirection will be covered in more detail later.

The head command is used to display the first several lines of a text file. For example, if in a home directory
and running the command head test.txt then the first ten lines of the test.txt file will be displayed.

Page of 13 27

The opposite is also true in that the tail command is used to display the last several lines of a text file. For
example, if in a home directory and running the command tail test.txt the last ten lines of the test.txt file
will be displayed.

A great feature of the tail command is the flag option -f, which does not stop at the end-of-file (EOF) but
waits for additional text to output from appended future updated input. A great example of this is when
monitoring log file updates in near realtime, such as:

$ tail -f /var/log/syslog

Jan 19 14:20:07 shroom systemd[1]: Started PackageKit Daemon.

Jan 19 14:21:46 shroom systemd[1]: Starting Ubuntu Advantage APT and MOTD Messages...

Jan 19 14:21:47 shroom systemd[1]: ua-messaging.service: Succeeded.

Jan 19 14:21:47 shroom systemd[1]: Finished Ubuntu Advantage APT and MOTD Messages.

Jan 19 14:27:23 shroom PackageKit: daemon quit

Jan 19 14:27:23 shroom systemd[1]: packagekit.service: Succeeded.

Jan 19 14:33:09 shroom systemd[1]: Starting Cleanup of Temporary Directories...

Jan 19 14:33:09 shroom systemd[1]: systemd-tmpfiles-clean.service: Succeeded.

Jan 19 14:33:09 shroom systemd[1]: Finished Cleanup of Temporary Directories.

[Press ENTER key several times to scroll output with blank lines as a means to divide old and new output]

On another terminal session execute the command logger FUBAR whilst looking at the terminal running with
the active tail -f command:

Jan 19 14:20:07 shroom systemd[1]: Started PackageKit Daemon.

Jan 19 14:21:46 shroom systemd[1]: Starting Ubuntu Advantage APT and MOTD Messages...

Jan 19 14:21:47 shroom systemd[1]: ua-messaging.service: Succeeded.

Jan 19 14:21:47 shroom systemd[1]: Finished Ubuntu Advantage APT and MOTD Messages.

Jan 19 14:27:23 shroom PackageKit: daemon quit

Jan 19 14:27:23 shroom systemd[1]: packagekit.service: Succeeded.

Jan 19 14:33:09 shroom systemd[1]: Starting Cleanup of Temporary Directories...

Jan 19 14:33:09 shroom systemd[1]: systemd-tmpfiles-clean.service: Succeeded.

Jan 19 14:33:09 shroom systemd[1]: Finished Cleanup of Temporary Directories.

Jan 19 15:00:06 jsmithpc jsmith: FUBAR

Further updates to the file will output via tail -f in near-realtime accordingly. NOTE: This is an important
command and /var/log/syslog is essential to reference for system log messages.

Both the more and less commands are known as pagers. They are useful when output is more than the size
of the terminal window.

The more command is used to view the content of a text file one page at a time when viewing long text files
that may exceed the height of the terminal size. An example could be more /etc/passwd in order to display
the contents of the /etc/passwd file one page at a time.

The less command is also used to view the content of a text file one page at a time, just like the more
command. However, it is more versatile than more and is often preferred by experienced users. An example
could be less /etc/passwd in order to display the contents of the /etc/passwd file one page at a time.

However, what must be known is the basic navigation commands when using more or less. Use the ↑ (up)
and ↓ (down) arrow keys to scroll through the contents one line at a time. To page the contents one page at a
time press the spacebar to go forward and the b key to go backwards. To navigate to the top of the page then
press the g key and to the bottom press the G key. To search for a specific keyword type / to forward search
and ? to search backwards. To cycle the search for more than one keyword match press n and N keys
respectively. If it is a forward search then n will be a forward search on the keyword, whereas if it is a
backward search then n will be a backward search on the keyword. The opposite behaviour to n is the N key
(the opposite of the search direction). Finally regarding pagers is that to quit and exit press the q key.

The script command is used to record all the output of a terminal session. It is useful for debugging, logging
or creating tutorials. It can also be used to create a text file version of output from a command.

Page of 14 27

Redirection and File Descriptors

I/O (Input/Output) redirection is the process of redirecting the standard I/O of a program to a different source
or destination. The < and > symbols are used to redirect standard input and output, respectively. The >>
symbol is used to redirect and append the standard output to a file.

An example of redirection for the output of a program to a file use the > symbol like ls > output.txt. To
append at the end of the file contents use ls >> output.txt. NOTE: With the > symbol this will overwrite the
file as opposed to the >> symbol, which will append to the end of the file.

In UNIX, the terminal I/O is referred to with the file descriptors 0, 1 and 2, which are stdin (standard input),
stdout (standard output) and stderr (standard error), respectively. These file descriptors are used by the
shell and other UNIX programs to read and write data to the terminal or other I/O devices.

Also, worth noting is that a file descriptor is an integer (whole number) value that is used to reference an
open file in UNIX. It is one of the main ways programs interact with files, sockets and other system
resources. For example, when a program opens a file, it is assigned a file descriptor that is used to refer to it.
The program can then use the file descriptor to read and write data to the file.

Another example of a file descriptor in UNIX is when a program opens a network socket. The socket is
assigned a file descriptor, which can be used to read data from and write data to it. This is especially useful
for network programming since the file descriptor allows a program to interact with a remote machine.
Sockets are treated as files accessed through file descriptors to allow socket operations to use the same
system calls, such as open, read, write and close, that are used for file operations.

Furthermore, when a program creates a pipe that passes data from one process to another, a file descriptor
is used to refer to the pipe. This file descriptor is used to read data from the pipe, write data to the pipe and
detect when one of the processes has finished.

stdin is defined as standard input and is the file descriptor for the standard input stream. It is used for
reading data from the keyboard or from a program to another program. For example, cat < /dev/stdin to
read from the keyboard.

stdout is defined as standard output and is the file descriptor for the standard output stream. It is used for
writing data from one program to another. For example, ls > /dev/stdout to write to the terminal.

stderr is defined as standard error and is the file descriptor for the standard error stream. It is used for
writing error messages from one program to another. For example, ls 2> /dev/stderr to write error
messages to the terminal.

<command> 2>&1 (stderr to stdout). This redirects the standard error stream to the standard output stream.
This is useful when you want to have both the standard output and standard error messages written to the
same destination. For example, if you wanted to write both the standard output and error messages of a
program to a file then use <command> 2>&1 > output.txt.

Redirection allows management of input and output of a command, which is useful for logging, automation
and chaining commands together.

A pipe | is used to take the output of one command as input to another. It is most commonly used to take the
output of one command and use it as the input of another command. For example, the command below will
pipe the output of the cat command listing the contents of multiple files, to the wc -l command, which will
count the number of lines of output:

$ cat *.cpp *.h | wc -l

Another example is listing the disk usage in kilobytes of all files in the current working directory piped from du
to the sort command in reverse numerical order:

$ du -sk ./* | sort -rn

The grep command (known as global regular expression print) is used to search for a pattern or a string (a
collection of alphanumeric characters) of text within a file or multiple files. For example, the command below
will search for the string main within all the .cpp and .h files in the current directory:

$ grep main *.cpp *.h

Page of 15 27

The command syntax for grep is as follows:

$ grep <options> <pattern> <files>

The pattern argument can be a regular expression, which is a way of describing a set of strings (more on
regular expressions later). For example, the most basic regular expression abc will match any line with the
string abc in it an dprint it as output.

The most commonly used options are -i (ignore case) and -v (invert match). The -i option causes grep to
ignore case when searching, while the -v option causes it to return only lines that do not match the pattern.

grep is powerful and incredibly versatile. It can be used for a variety of tasks that can save time and effort
when searching through files or streams of data. For example, it can be used to search for particular words
or phrases in log files, to locate files that contain certain text or to find duplicate lines in a file. It can also be
used to find the number of occurrences of a particular string in a file.

The cut command can be used to extract a particular field from a file, such as the /etc/passwd file. This file
contains information about each user that is registered on a UNIX system, such as their username, user ID,
primary group ID, home directory and shell. The cut command can be used to extract any one of these fields
from the file.

For example, to extract the username from the /etc/passwd file then use the following command:

$ cut -d : -f 1 /etc/passwd

This command uses the -d option to specify that the field delimiter used in the file, which in this case is a :
(colon) and the -f option to specify the desired field number, for example, 1 for the username as the first field
in /etc/passwd.

Another example to extract the UID field from the /etc/passwd file is:

$ cut -d : -f 3 /etc/passwd

Users and Groups
The id command is used to display the user identity, group identity and group membership of a user. It is
used to print the user ID (UID) and group ID (GID) of the current user, along with any supplementary group
IDs.

The w command is used to print information about users who are currently logged into the system. It will
display the login name of each user, the time of the login, the load average of the system and the host from
which the user is logged in.

The who command is used to list information about users who are currently logged into the system. It will
display the login name of each user, the time of the login and the host from which the user is logged in.

The whoami command is used to display the username of the user who is currently logged in.

$ whoami

jsmith

$ sudo -i

whoami

root

id

uid=0(root) gid=0(root) groups=0(root)

The command sudo is to execute a command as another user, typically the root user. The command su -
means switch to the root user and inherit their environment.

User/group administration commands (see corresponding man pages) on a UNIX/UNIX-like system include:

$ sudo useradd <username>

$ sudo userdel -r <username>

$ sudo usermod <option> <username>

$ sudo usermod -aG <groupname> <username>

$ sudo groupadd <groupname>

$ sudo groupdel <groupname>

Page of 16 27

Date and Time
The following shows commands relating to date and time accordingly:

$ cal 12 2022

 December 2022

Su Mo Tu We Th Fr Sa

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

$ date

Thu 19 Jan 2023 21:56:42 GMT

The system date and time can be set with the date command with certain arguments but also via ntp
(Network Time Protocol), a distributed time service calibrated with an atomic clock.

System Management
System management in UNIX involves monitoring, maintaining and configuring the system to ensure optimal
performance and reliability. This section provides detailed descriptions and usage examples for key system
management commands.

To display system information:

$ uname -a

To display the system message buffer for debugging hardware and driver issues use the following:

$ dmesg | less

To clear the message buffer:

$ sudo dmesg -C

To show how long the system has been running, the number of users and the system load averages
execute:

$ uptime

To list the last logins of users:

$ last

To display the last system reboots execute:

$ last reboot

System shutdown and reboot involves a series of commands, such as performing an immediate shutdown as
follows:

$ sudo shutdown -h now

To schedule a shutdown:

$ sudo shutdown -h +10 "System will shutdown in 10 minutes."

To reboot the system:

$ sudo reboot

To power off the system:

$ sudo poweroff

Page of 17 27

For log management queries and to display messages from the systemd journal issue the following
command:

$ journalctl -xe

To view logs for a specific unit:

$ journalctl -u <unit>

Adding entries to the system log can be done as follows:

$ logger "This is a test log entry"

Regarding service management to control a systemd system and service manager the following is useful.

To start a service:

$ sudo systemctl start <service>

To stop a service:

$ sudo systemctl stop <service>

To restart a service:

$ sudo systemctl restart <service>

To enable a service to start on boot:

$ sudo systemctl enable <service>

To disable a service from starting on boot:

$ sudo systemctl disable <service>

To check the status of a service:

$ sudo systemctl status <service>

Hardware Information can be accessed with the following series of commands.

To list detailed information about all hardware:

$ sudo lshw

To list information about block devices:

$ lsblk

To display information about the CPU architecture:

$ lscpu

Listing USB devices can be done with:

$ lsusb

Similarly, to list all PCI devices:

$ lspci

Disk management tools begins with reporting file system block storage space usage as follows:

$ df -h

For estimating file space usage use:

$ du -sh <directory>

Page of 18 27

To mount a file system to the directory /mnt is done as follows:

$ sudo mount /dev/sdX1 /mnt

To unmount this file system is done as follows:

$ sudo umount /mnt

To typically check and repairs a file system involves issuing the following command:

$ sudo fsck /dev/sdX1

To display running tasks on the system can be done with:

$ top

An extension of top as an interactive process viewer for UNIX/UNIX-like systems requires execution of the
following command:

$ htop

Kernel management and to configure kernel parameters at runtime the following can be done with:

$ sudo sysctl -a

To change a kernel parameter:

$ sudo sysctl -w net.ipv4.ip_forward=1

To add and remove modules from the kernel is as follows:

$ sudo modprobe <module>

$ sudo modprobe -r <module>

To show the status of modules in the kernel:

$ lsmod

These command-line tools provide the foundation for effective system management on UNIX/UNIX-like
systems, ensuring administrators can maintain system performance, security and reliability.

Package Management

Package management is essential for maintaining and updating software on UNIX/UNIX-like systems. This
section covers the various commands used in package management, focusing on the dpkg format system
with APT (Advanced Package Tool) repositories. The apt command ensures dependencies are resolved and
obsolete packages are removed.

To update the package list of available packages and their versions without installing or upgrading any
packages then issue the following command:

$ sudo apt update

To upgrade the packages after sudo apt update has been executed then the following command will install
the newest versions of all currently installed out-of-date packages:

$ sudo apt upgrade

For upgrading to a new distribution release from the software vendor then issue the following command:

$ sudo apt dist-upgrade

To install a package along with its dependencies then do the following:

$ sudo apt install <package>

Page of 19 27

To remove a package but keep its configuration files issue the following command:

$ sudo apt remove <package>

To remove a package along with its configuration files then execute the following:

$ sudo apt purge <package>

The following command allows searching for packages in the APT repositories:

$ apt search <keyword>

To display detailed information about a specific package then execute the following command:

$ apt show <package>

For listing all installed packages run the following command:

$ dpkg -l

To show the status of an installed package run:

$ dpkg -s <package>

To fix broken dependencies run:

$ sudo apt --fix-broken install

To remove packages that were automatically installed to satisfy dependencies for other packages and are
now no longer needed then execute the following command:

$ sudo apt autoremove

For clearing out the local repository of retrieved package files (which can save block storage device space)
then issue the following command:

$ sudo apt clean

Low-level package management is achieved with the dpkg command, whereby to reconfigure an unpacked
package then use:

$ sudo dpkg --configure <package>

To install a package from a local .deb file then this can be done as follows:

$ sudo dpkg -i <file>.deb

To remove an installed package then do the following:

$ sudo dpkg -r <package>

To purge an installed package, removing configuration files as well, then execute:

$ sudo dpkg -P <package>

Understanding and using these package management commands ensures that UNIX/UNIX-like systems, in
this instance a Linux system due to using APT, are kept up-to-date and secure, with software dependencies
properly managed and obsolete packages efficiently removed.

Process Management

The init process is the initial process in a UNIX-based Operating System. It is responsible for starting,
stopping and managing daemons (background processes) and other system services. When the system is
powered up, the init process is the first process to be created by the kernel and is given a process ID of 1. It
then proceeds to read the system configuration files and execute the configured run levels. During the
startup process, init reads the /etc/inittab configuration file to determine which run level to boot into, and

Page of 20 27

then proceeds to launch the processes associated with that run level. init also handles signals sent to the
system, such as shutdown and reboot requests. init also monitors the health of all other processes running
on the system and can restart them if necessary therefore init serves as a watchdog to ensure that the
system is running properly and to take corrective action if any problems are detected.

$ pgrep -lf init

1 systemd

pgrep is a command-line tool used to search for processes running on a system. It scans through the
process table and looks for user-specified patterns. The user can set various criteria including process name,
username, terminal or environment variables.

The command pstree is a tool used to display the process hierarchy in a tree format. It shows the parent-
child relationships between each process and their respective PIDs. It is useful for understanding the inter-
process communication within the system.

$ sudo pstree -lpsn 1

systemd(1)-+-systemd-journal(359)

 |-systemd-udevd(386)

 |-multipathd(510)-+-{multipathd}(511)

 | |-{multipathd}(512)

 | |-{multipathd}(513)

 | |-{multipathd}(514)

 | |-{multipathd}(515)

 | `-{multipathd}(516)

 |-systemd-timesyn(557)---{systemd-timesyn}(566)

 |-systemd-network(774)

 |-systemd-resolve(776)

 |-accounts-daemon(801)-+-{accounts-daemon}(807)

 | `-{accounts-daemon}(868)

 |-cron(805)

 |-dbus-daemon(806)

 |-networkd-dispat(815)

 |-rsyslogd(817)-+-{rsyslogd}(830)

 | |-{rsyslogd}(831)

 | `-{rsyslogd}(832)

 |-snapd(818)-+-{snapd}(921)

 | |-{snapd}(922)

 | |-{snapd}(923)

 | |-{snapd}(924)

 | |-{snapd}(929)

 | |-{snapd}(930)

 | |-{snapd}(948)

 | |-{snapd}(954)

 | |-{snapd}(956)

 | `-{snapd}(962)

 |-systemd-logind(820)

 |-udisksd(822)-+-{udisksd}(827)

 | |-{udisksd}(869)

 | |-{udisksd}(895)

 | `-{udisksd}(905)

 |-atd(823)

 |-unattended-upgr(872)---{unattended-upgr}(919)

 |-polkitd(882)-+-{polkitd}(886)

 | `-{polkitd}(888)

 |-sshd(1344)

 |-agetty(2611)

 |-login(2910)---bash(3022)---sudo(3422)---pstree(3423)

 `-systemd(3015)---(sd-pam)(3017)

The command ps is a utility used to display information about currently running processes. It displays the
process ID, parent process ID, memory used, CPU time used and command used to run the process. This
can be used to monitor processes, troubleshoot performance issues, yet also to stop or kill processes.

$ ps -elf

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 0 0 80 0 - 25800 - 14:18 ? 00:00:02 /sbin/init

1 S root 2 0 0 80 0 - 0 - 14:18 ? 00:00:00 [kthreadd]

1 I root 3 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [rcu_gp]

1 I root 4 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [rcu_par_gp]

1 I root 6 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [kworker/0:0H-kblockd]

1 I root 8 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [mm_percpu_wq]

1 S root 9 2 0 80 0 - 0 - 14:18 ? 00:00:00 [ksoftirqd/0]

1 I root 10 2 0 80 0 - 0 - 14:18 ? 00:00:03 [rcu_sched]

1 S root 11 2 0 -40 - - 0 - 14:18 ? 00:00:00 [migration/0]

5 S root 12 2 0 9 - - 0 - 14:18 ? 00:00:00 [idle_inject/0]

Page of 21 27

1 S root 14 2 0 80 0 - 0 - 14:18 ? 00:00:00 [cpuhp/0]

5 S root 15 2 0 80 0 - 0 - 14:18 ? 00:00:00 [kdevtmpfs]

1 I root 16 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [netns]

1 S root 17 2 0 80 0 - 0 - 14:18 ? 00:00:00 [rcu_tasks_kthre]

1 S root 18 2 0 80 0 - 0 - 14:18 ? 00:00:00 [kauditd]

1 S root 19 2 0 80 0 - 0 - 14:18 ? 00:00:00 [khungtaskd]

1 S root 20 2 0 80 0 - 0 - 14:18 ? 00:00:00 [oom_reaper]

1 I root 21 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [writeback]

1 S root 22 2 0 80 0 - 0 - 14:18 ? 00:00:00 [kcompactd0]

1 S root 23 2 0 85 5 - 0 - 14:18 ? 00:00:00 [ksmd]

1 S root 24 2 0 99 19 - 0 - 14:18 ? 00:00:00 [khugepaged]

1 I root 70 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [kintegrityd]

1 I root 71 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [kblockd]

1 I root 72 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [blkcg_punt_bio]

1 I root 73 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [tpm_dev_wq]

1 I root 74 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [ata_sff]

1 I root 75 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [md]

1 I root 76 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [edac-poller]

1 I root 77 2 0 60 -20 - 0 - 14:18 ? 00:00:00 [devfreq_wq]

The nice command is used to change the default priority of a process. It helps to determine how much CPU
time a process gets. To use the nice command, run it with the desired priority level as an argument, such as:

$ nice -n 10 <program>

This will set the priority of a new program process to 10. The priority level range is from -20 (most favourable
process priority) to 19 (least favourable process priority).

The renice command is used to change the priority of an existing process. It works in a similar way to nice
except that you need to specify the PID of the process that you want to change. For example:

$ renice -n 10 1234

This will change the priority of the process with PID 1234 to 10.

The top command is used to view the resource utilisation of processes running on a UNIX system. It displays
a list of processes, along with their CPU and memory usage and a breakdown of their states. It also allows
users to kill processes, change their priority, and more.

The htop command is similar to top but it is more user-friendly and provides more information, such as the
command of the process, its environment variables, and more. It also has a good interface and allows users
to filter processes, set CPU affinity, an so on.

The screen command is used to create virtual terminals on a UNIX system. It allows users to keep multiple
programs running at the same time, even if they are disconnected from the terminal. It also allows users to
reconnect to their virtual terminals from another location. Screen is a terminal multiplexer, which means that
it allows multiple virtual terminals to be open on a single system. Using screen in a production environment is
ideal for persistent server processes.

The execution of ./<command> & is used to run a program in the background, asynchronously from the
current process. When this command is used, the program is executed without waiting for its completion,
allowing the current process to continue uninterrupted. This is especially useful for long running processes
that are not dependent on the current process.

The following is an example of executing the bit-nibbler dd as an asynchronous process (denoted by the
trailing & character) and also showing the variety of commands to terminate the background dd process:

$ dd if=/dev/random of=random.txt bs=1G count=256 &

[1] 3751

$ pgrep -lf random

3751 dd

$ pkill -f random

$ pgrep -lf random

[1]+ Terminated dd if=/dev/random of=random.txt bs=1G count=256

$ dd if=/dev/random of=random.txt bs=1G count=256 &

[1] 3757

$ pgrep -lf random

3757 dd

$ pkill -9 -f random

Page of 22 27

$ pgrep -lf random

[1]+ Killed dd if=/dev/random of=random.txt bs=1G count=256

$ dd if=/dev/random of=random.txt bs=1G count=256 &

[1] 3764

$ jobs

[1]+ Running dd if=/dev/random of=random.txt bs=1G count=256 &

$ kill %1

$ pgrep -lf random

[1]+ Terminated dd if=/dev/random of=random.txt bs=1G count=256

$ dd if=/dev/random of=random.txt bs=1G count=256 &

[1] 3766

$ kill 3766

$ pgrep -lf random

[1]+ Terminated dd if=/dev/random of=random.txt bs=1G count=256

$ head random.txt

ӳ<FA>J<A1>H<B0><D0>}~<BD>1ʛ<C1><BB><ED>͑<F3><B4><97>&<B3>$,\y<CA>=g<98>]

 '9<BA>iK<EE><D6>f<B1>

<FA>|<84><8A><A3>[<BA><F8>|<A0>l]Nt<8C><88><C0><E6><D9>N<C4>AfW<FA>.<F9><A5>eU<A2>X<86><E1>b

Garbled terminal output requires a reset as follows:

$ reset

The kill command is a signal handler for processes.

$ kill <signal> <PID>

$ kill -1 <PID>	 	 	 - SIGHUP

$ kill -2 <PID>	 	 	 - SIGINT

$ kill -9 <PID>	 	 	 - SIGKILL

Process signals can be seen in much further detail via:

$ man signal

The commands pkill and killall take a process name as an argument in order to invoke the signal.

Networking
Networking in UNIX is managed through a combination of system commands and configuration files. This
section covers essential commands and tools for managing network settings, connections and diagnostics.

Hostname and domain information can be displayed with the following commands as follows:

$ hostname

$ domainname

Network configuration and diagnostic tools include the series of commands that follow.

The classic way to get and set configuration of network interfaces initially requires the following package to
be installed:

$ sudo apt install net-tools

To display all the network interfaces after installing this package execute the following command:

$ ifconfig

However, the same can be achieved with the more modern command:

$ ip addr show

To test connectivity to a host use:

$ ping <ip-addr>

Page of 23 27

To capture and analyse network traffic requires using sudo to access network interfaces in promiscuous
mode with the following well-established network analysis tool:

$ sudo tcpdump

DNS and lookup utilities include whois, nslookup and dig. To retrieve information about a domain name.on
the internet use the command:

$ whois <domainname>

To query DNS to obtain domain name or IP address mappings.then execute:

$ nslookup <domainname>

- or -

$ dig -x <ip-addr>

Network monitoring and statistics can be obtained as follows accordingly.

To display network connections, routing tables, interface statistics, masquerade connections and multicast
memberships then execute:

$ netstat -a

To display the kernel routing table execute:

$ netstat -rn

To provide detailed information about network sockets use the following command:

$ ss -tuln

For remote file transfers and remote logins is typically done using the commands scp (secure copy) and ssh
(secure shell).

To securely copy files between hosts across the network from a local host to a remote host execute:

$ scp <file> user@hostname:/home/user

To copy a file from a remote host:

$ scp user@hostname:/home/user/<file>

To securely log into a remote machine and execute commands on that host accordingly use the secure shell
as follows:

$ ssh user@hostname

To download files from the web with the command-line use the following:.

$ wget <URL>

- or -

$ curl -O <URL>

Additional networking tools include tracking the path packets take to a network host:

$ traceroute <hostname>

However, combining the functionality of traceroute and ping in a single network diagnostic tool is as follows:

$ mtr <hostname>

A really great way to monitor active network connections of a host in near-realtime is with the following
combination of commands:

$ watch -n 0.1 sudo lsof -nP -iTCP -sTCP:LISTEN

Page of 24 27

Understanding and effectively using these networking command-line tools is crucial for system
administration, network troubleshooting and ensuring reliable network operations on UNIX systems.

System Performance Monitoring
The following package contains several system monitoring tools such as sar, iostat, vmstat and mpstat.

$ sudo apt install sysstat

The command netstat -a displays all network connections and listening ports on the system. It prints out the
source and destination address, port number and protocol information for each connection.

The command netstat -rn displays the kernel routing table. It prints out the destination address, gateway
address and interface information for each route.

The command iostat displays I/O utilisation statistics for all block devices. It prints the number of read/write
operations and the amount of data transferred for each device.

The command vmstat displays virtual memory utilisation statistics. It prints out the amount of free and used
memory, the amount of memory swapped in and out and the amount of CPU time used for system
processes.

The command free -h is used to display the amount of free and used memory in the system, including
physical and swap, as well as the shared memory and buffers used by the kernel. The -h flag is used to
display the output in a more human-readable format.

The command mpstat displays multiprocessor utilisation statistics. It prints the number of tasks running on
each processor and the amount of time spent in user and system mode.

Regular Expressions
Regular expressions (or regex) are special strings used to describe a search pattern. They are used for
string manipulation, data validation and text processing. It can be used to match strings or parts of strings.
For example, using regex to match all emails in a string or to match all words that begin with a specific letter.
Also, regex can be used to search for specific text and make changes to it by finding all instances of a
certain word and then replace them with a different word. Regex can also be used to validate user input,
such as checking if an email address is valid or to check if a phone number is in the correct format. Regex
can be used to parse strings into smaller parts, including splitting a string or to extract data from an XML
document. Furthermore, regex can be used to analyse data like counting the number of occurrences of a
certain word in a set of text or to find the most frequently used words in a document.

The following details most of the syntactical components of regex:

Symbol	 	 Description

.	 	 	 Replace any character.

^	 	 	 Match at start of string.

$	 	 	 Match at end of string.

*	 	 	 Match zero or more occurrences.

+	 	 	 Match one or more occurrences.

?	 	 	 Match exactly one occurrence.

\	 	 	 Escape sequence for special characters.

[]	 	 	 Group character classes.

()	 	 	 Group regex.

{n}	 	 	 Match proceeding character n times.

{n,m}	 	 	 Match proceeding character n times up to m times.

{n,}	 	 	 Match proceeding character n times or more.

The following pattern would match any string that contains the letters abc:

/abc/

Page of 25 27

To make the pattern more specific, then use special characters and symbols to create a more complex
pattern. For example, the following pattern would match any string that contains the letters abc in that order
with the character a at the beginning of the string and the character c at the end of the string:

/^abc$/

The caret ^ symbol indicates the beginning of the string and the dollar sign $ indicates the end of the string.

A further basic example to consider is:

/\d{5}/

The \d symbol indicates any digit and the {5} indicates that there must be exactly 5 digits in the pattern.

A more complex example is that of a common regex that validates an email address, which is as follows:

^[a-zA-Z0-9.!#$%&’*+/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:
[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$

This regex checks the email address against a specified pattern, ensuring that it contains all the necessary
components and meets certain formatting requirements. It starts with the ^ symbol, which indicates the start
of the string. It then contains a series of characters that are allowed in the email address, including letters,
numbers and various special characters (from the [a-zA-Z0-9.!#$%&’*+/=?^_`{|}~-] set). This is followed by
an @ symbol, which is a required part of an email address. After the @ symbol, there is a series of characters
that are allowed in the email address, again including letters, numbers and various special characters (from
the [a-zA-Z0-9] set). The ? symbol indicates that the previous set of characters is optional. This is followed
by a . symbol, which is a required part of an email address. After the . symbol, there is a series of characters
that are allowed in the email address, again including letters, numbers and various special characters (from
the [a-zA-Z0-9] set). The ? symbol again indicates that the previous set of characters is optional. The *
symbol indicates that the previous set of characters can be repeated any number of times (including zero).
Finally, the $ symbol indicates the end of the string.

Essentially, regular expressions are a powerful tool used to search and manipulate text strings.

Visual Editor
The visual editor vi is a text editor developed by Bill Joy (a founder and Chief Scientist of Sun Microsystems)
in 1976. It is used primarily on UNIX/UNIX-like systems and is still widely used today. It is a modal editor,
meaning that it has different modes for different tasks. Also, vi is a powerful editor, although it can be difficult
to learn due to its modal nature.

A future development of the original vi is its clone vim (Vi IMproved), which comes with additional features
designed to make it easier to use. It is also a modal editor, like the original vi. Furthermore, vim supports
syntax highlighting, auto-completion and macros. A version of vim that runs as a GUI application is gvim. It
provides the same features as vim, but with a graphical interface that allows for the look and feel of the editor
to be extensively customised. Also, because it has a GUI it is even more easier to use. Furthermore, gvim
also supports plugins and script languages. It also facilitates syntax highlighting for a huge variety of different
programming languages too.

Worth noting in advance is that there are two modes for vi, vim and gvim, that being command and insert
mode. The command mode allows for further functionality and efficient editing capability, although when in
this mode it is not possible to type input as expected with a text editor. This is where insert mode comes in,
therefore making it possible to type input accordingly. Initially, upon starting the visual editor the default mode
is that of command mode. To change from command mode to insert mode can be done a variety of ways but
the most easiest way is by pressing the i key. To switch from insert mode to command mode can be done by
pressing the ESC key.

To open a file with all variants of the editor:

$ vi <filename>

$ vim <filename>

$ gvim <filename>

By specifying the flag option -x a prompt for the entry of an encryption key is presented, which encrypts the
file using blowfish2 as the encryption algorithm.

Page of 26 27

As previously stated, the default mode upon opening a file is command mode. Upon opening a file, press the
i key to change to insert mode, whereby in this mode all the arrow keys move the cursor around the
contents of the file. To save the file, entering command mode is required, which is done by pressing the ESC
key followed by typing :w and then pressing the ENTER key in order to write the file. To quit editing the file,
enter command mode and type :q followed by the ENTER key. Both of these command mode commands can
be used together for more efficiency, therefore upon pressing the ESC key the following command :wq will
write and quit the file. To abort changes to file when quitting press the ESC key followed by the command :q!
to override accordingly.

To search for a word in a file, simply press ESC followed by /word-to-search and then ENTER. Use the n key for
cycling a forward search or the N key for cycling a search backwards. Also, searching a word allows for regex
too. To replace all occurrences of a word in the file requires entering command mode followed by:

:%s/old-word/new-word/g

Then press ENTER.

Command	 	 Description

ESC	 	 	 Terminate insert mode and enter command mode.

i	 	 	 Insert at cursor (enters insert mode).

a	 	 	 Insert after cursor (enters insert mode).

A	 	 	 Insert at end-of-line (enters insert mode).

o	 	 	 Open newline below current line (enters insert mode).

O	 	 	 Open newline above current line (enters insert mode).

u	 	 	 Undo.

CTRL R		 	 Redo.

gg	 	 	 Move cursor to the first line.

G	 	 	 Move cursor to the last line.

x	 	 	 Delete character at cursor.

3x	 	 	 Delete 3 characters from the cursor.

r	 	 	 Replace character at cursor.

2r	 	 	 Replace 2 characters from the cursor.

dd	 	 	 Delete current line.

7dd	 	 	 Delete 7 lines from current line.

D	 	 	 Delete contents of the current line from the cursor position.

C	 	 	 Delete contents of the current line from the cursor position (enters insert mode).

dw	 	 	 Delete word.

3dw	 	 	 Delete 3 words.

dG	 	 	 Delete the current line to the last line.

cw	 	 	 Change word (enters insert mode).

yy	 	 	 Yank a line (copy current line into buffer).

3yy	 	 	 Yank 3 lines (copy 3 lines from current line into buffer).

p	 	 	 Paste contents in buffer (NB: Delete operations copy removed content into buffer).

~	 	 	 Change of case alternating from upper-to-lower or lower-to-upper.

Conclusion
This tutorial has provided an introduction to the UNIX/UNIX-like command-line and fundamental commands
from basic navigation and file manipulation to more advanced topics, such as system management. This
document aims to be an essential guide for the development of necessary skills to efficiently operate within a
UNIX environment. Emphasis was placed on understanding the syntax and functionality of commands,
ensuring that users can apply them in real-world scenarios with confidence.

Additionally, special attention was given to the visual editor vi and regular expressions, tools that
significantly enhance text processing and editing capabilities. As a novice user continuing to explore and
master the UNIX commands in this tutorial, this will allow for establishing a foundation to becoming more
proficient in managing UNIX systems, with the goal to hopefully encourage further learning through
exploration, ensuring better preparation in tackling complex tasks and to optimise workflows accordingly. The
core aim is to provide a valuable resource for gaining a high-level of proficiency within UNIX environments
through powerful use of the command-line.

Page of 27 27

	Introduction
	Common Keyboard Shortcuts
	Shell Basics
	User Environment
	Help and Support
	UNIX Filesystem Hierarchy
	Navigating the Filesystem
	Managing Files and Directories
	Files and Filesystems
	Working with Text Files
	Redirection and File Descriptors
	Users and Groups
	Date and Time
	System Management
	Package Management
	Process Management
	Networking
	System Performance Monitoring
	Regular Expressions
	Visual Editor
	Conclusion

